detail/charconv/detail/compute_float64.hpp
0.0% Lines (0/53)
0.0% Functions (0/1)
0.0% Branches (0/44)
detail/charconv/detail/compute_float64.hpp
| Line | Hits | Source Code |
|---|---|---|
| 1 | // Copyright 2020-2023 Daniel Lemire | |
| 2 | // Copyright 2023 Matt Borland | |
| 3 | // Distributed under the Boost Software License, Version 1.0. | |
| 4 | // https://www.boost.org/LICENSE_1_0.txt | |
| 5 | ||
| 6 | #ifndef BOOST_JSON_DETAIL_CHARCONV_DETAIL_COMPUTE_FLOAT64_HPP | |
| 7 | #define BOOST_JSON_DETAIL_CHARCONV_DETAIL_COMPUTE_FLOAT64_HPP | |
| 8 | ||
| 9 | #include <boost/json/detail/charconv/detail/config.hpp> | |
| 10 | #include <boost/json/detail/charconv/detail/significand_tables.hpp> | |
| 11 | #include <boost/json/detail/charconv/detail/emulated128.hpp> | |
| 12 | #include <boost/core/bit.hpp> | |
| 13 | #include <cstdint> | |
| 14 | #include <cfloat> | |
| 15 | #include <cstring> | |
| 16 | #include <cmath> | |
| 17 | ||
| 18 | namespace boost { namespace json { namespace detail { namespace charconv { namespace detail { | |
| 19 | ||
| 20 | static constexpr double powers_of_ten[] = { | |
| 21 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, | |
| 22 | 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22 | |
| 23 | }; | |
| 24 | ||
| 25 | // Attempts to compute i * 10^(power) exactly; and if "negative" is true, negate the result. | |
| 26 | // | |
| 27 | // This function will only work in some cases, when it does not work, success is | |
| 28 | // set to false. This should work *most of the time* (like 99% of the time). | |
| 29 | // We assume that power is in the [-325, 308] interval. | |
| 30 | ✗ | inline double compute_float64(std::int64_t power, std::uint64_t i, bool negative, bool& success) noexcept |
| 31 | { | |
| 32 | static constexpr auto smallest_power = -325; | |
| 33 | static constexpr auto largest_power = 308; | |
| 34 | ||
| 35 | // We start with a fast path | |
| 36 | // It was described in Clinger WD. | |
| 37 | // How to read floating point numbers accurately. | |
| 38 | // ACM SIGPLAN Notices. 1990 | |
| 39 | #if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) | |
| 40 | if (0 <= power && power <= 22 && i <= UINT64_C(9007199254740991)) | |
| 41 | #else | |
| 42 | ✗ | if (-22 <= power && power <= 22 && i <= UINT64_C(9007199254740991)) |
| 43 | #endif | |
| 44 | { | |
| 45 | // The general idea is as follows. | |
| 46 | // If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then | |
| 47 | // 1) Both s and p can be represented exactly as 64-bit floating-point | |
| 48 | // values | |
| 49 | // (binary64). | |
| 50 | // 2) Because s and p can be represented exactly as floating-point values, | |
| 51 | // then s * p | |
| 52 | // and s / p will produce correctly rounded values. | |
| 53 | ||
| 54 | ✗ | auto d = static_cast<double>(i); |
| 55 | ||
| 56 | ✗ | if (power < 0) |
| 57 | { | |
| 58 | ✗ | d = d / powers_of_ten[-power]; |
| 59 | } | |
| 60 | else | |
| 61 | { | |
| 62 | ✗ | d = d * powers_of_ten[power]; |
| 63 | } | |
| 64 | ||
| 65 | ✗ | if (negative) |
| 66 | { | |
| 67 | ✗ | d = -d; |
| 68 | } | |
| 69 | ||
| 70 | ✗ | success = true; |
| 71 | ✗ | return d; |
| 72 | } | |
| 73 | ||
| 74 | // When 22 < power && power < 22 + 16, we could | |
| 75 | // hope for another, secondary fast path. It was | |
| 76 | // described by David M. Gay in "Correctly rounded | |
| 77 | // binary-decimal and decimal-binary conversions." (1990) | |
| 78 | // If you need to compute i * 10^(22 + x) for x < 16, | |
| 79 | // first compute i * 10^x, if you know that result is exact | |
| 80 | // (e.g., when i * 10^x < 2^53), | |
| 81 | // then you can still proceed and do (i * 10^x) * 10^22. | |
| 82 | // Is this worth your time? | |
| 83 | // You need 22 < power *and* power < 22 + 16 *and* (i * 10^(x-22) < 2^53) | |
| 84 | // for this second fast path to work. | |
| 85 | // If you have 22 < power *and* power < 22 + 16, and then you | |
| 86 | // optimistically compute "i * 10^(x-22)", there is still a chance that you | |
| 87 | // have wasted your time if i * 10^(x-22) >= 2^53. It makes the use cases of | |
| 88 | // this optimization maybe less common than we would like. Source: | |
| 89 | // http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/ | |
| 90 | // also used in RapidJSON: https://rapidjson.org/strtod_8h_source.html | |
| 91 | ||
| 92 | ✗ | if (i == 0 || power < smallest_power) |
| 93 | { | |
| 94 | ✗ | return negative ? -0.0 : 0.0; |
| 95 | } | |
| 96 | ✗ | else if (power > largest_power) |
| 97 | { | |
| 98 | ✗ | return negative ? -HUGE_VAL : HUGE_VAL; |
| 99 | } | |
| 100 | ||
| 101 | ✗ | const std::uint64_t factor_significand = significand_64[power - smallest_power]; |
| 102 | ✗ | const std::int64_t exponent = (((152170 + 65536) * power) >> 16) + 1024 + 63; |
| 103 | ✗ | int leading_zeros = boost::core::countl_zero(i); |
| 104 | ✗ | i <<= static_cast<std::uint64_t>(leading_zeros); |
| 105 | ||
| 106 | ✗ | uint128 product = umul128(i, factor_significand); |
| 107 | ✗ | std::uint64_t low = product.low; |
| 108 | ✗ | std::uint64_t high = product.high; |
| 109 | ||
| 110 | // We know that upper has at most one leading zero because | |
| 111 | // both i and factor_mantissa have a leading one. This means | |
| 112 | // that the result is at least as large as ((1<<63)*(1<<63))/(1<<64). | |
| 113 | // | |
| 114 | // As long as the first 9 bits of "upper" are not "1", then we | |
| 115 | // know that we have an exact computed value for the leading | |
| 116 | // 55 bits because any imprecision would play out as a +1, in the worst case. | |
| 117 | // Having 55 bits is necessary because we need 53 bits for the mantissa, | |
| 118 | // but we have to have one rounding bit and, we can waste a bit if the most | |
| 119 | // significant bit of the product is zero. | |
| 120 | // | |
| 121 | // We expect this next branch to be rarely taken (say 1% of the time). | |
| 122 | // When (upper & 0x1FF) == 0x1FF, it can be common for | |
| 123 | // lower + i < lower to be true (proba. much higher than 1%). | |
| 124 | ✗ | if (BOOST_UNLIKELY((high & 0x1FF) == 0x1FF) && (low + i < low)) |
| 125 | { | |
| 126 | ✗ | const std::uint64_t factor_significand_low = significand_128[power - smallest_power]; |
| 127 | ✗ | product = umul128(i, factor_significand_low); |
| 128 | //const std::uint64_t product_low = product.low; | |
| 129 | ✗ | const std::uint64_t product_middle2 = product.high; |
| 130 | ✗ | const std::uint64_t product_middle1 = low; |
| 131 | ✗ | std::uint64_t product_high = high; |
| 132 | ✗ | const std::uint64_t product_middle = product_middle1 + product_middle2; |
| 133 | ||
| 134 | ✗ | if (product_middle < product_middle1) |
| 135 | { | |
| 136 | ✗ | product_high++; |
| 137 | } | |
| 138 | ||
| 139 | // Commented out because possibly unneeded | |
| 140 | // See: https://arxiv.org/pdf/2212.06644.pdf | |
| 141 | /* | |
| 142 | // we want to check whether mantissa *i + i would affect our result | |
| 143 | // This does happen, e.g. with 7.3177701707893310e+15 | |
| 144 | if (((product_middle + 1 == 0) && ((product_high & 0x1FF) == 0x1FF) && (product_low + i < product_low))) | |
| 145 | { | |
| 146 | success = false; | |
| 147 | return 0; | |
| 148 | } | |
| 149 | */ | |
| 150 | ||
| 151 | ✗ | low = product_middle; |
| 152 | ✗ | high = product_high; |
| 153 | } | |
| 154 | ||
| 155 | // The final significand should be 53 bits with a leading 1 | |
| 156 | // We shift it so that it occupies 54 bits with a leading 1 | |
| 157 | ✗ | const std::uint64_t upper_bit = high >> 63; |
| 158 | ✗ | std::uint64_t significand = high >> (upper_bit + 9); |
| 159 | ✗ | leading_zeros += static_cast<int>(1 ^ upper_bit); |
| 160 | ||
| 161 | // If we have lots of trailing zeros we may fall between two values | |
| 162 | ✗ | if (BOOST_UNLIKELY((low == 0) && ((high & 0x1FF) == 0) && ((significand & 3) == 1))) |
| 163 | { | |
| 164 | // if significand & 1 == 1 we might need to round up | |
| 165 | ✗ | success = false; |
| 166 | ✗ | return 0; |
| 167 | } | |
| 168 | ||
| 169 | ✗ | significand += significand & 1; |
| 170 | ✗ | significand >>= 1; |
| 171 | ||
| 172 | // Here the significand < (1<<53), unless there is an overflow | |
| 173 | ✗ | if (significand >= (UINT64_C(1) << 53)) |
| 174 | { | |
| 175 | ✗ | significand = (UINT64_C(1) << 52); |
| 176 | ✗ | leading_zeros--; |
| 177 | } | |
| 178 | ||
| 179 | ✗ | significand &= ~(UINT64_C(1) << 52); |
| 180 | ✗ | const std::uint64_t real_exponent = exponent - leading_zeros; |
| 181 | ||
| 182 | // We have to check that real_exponent is in range, otherwise fail | |
| 183 | ✗ | if (BOOST_UNLIKELY((real_exponent < 1) || (real_exponent > 2046))) |
| 184 | { | |
| 185 | ✗ | success = false; |
| 186 | ✗ | return 0; |
| 187 | } | |
| 188 | ||
| 189 | ✗ | significand |= real_exponent << 52; |
| 190 | ✗ | significand |= ((static_cast<std::uint64_t>(negative) << 63)); |
| 191 | ||
| 192 | double d; | |
| 193 | ✗ | std::memcpy(&d, &significand, sizeof(d)); |
| 194 | ||
| 195 | ✗ | success = true; |
| 196 | ✗ | return d; |
| 197 | } | |
| 198 | ||
| 199 | }}}}} // Namespaces | |
| 200 | ||
| 201 | #endif // BOOST_JSON_DETAIL_CHARCONV_DETAIL_COMPUTE_FLOAT64_HPP | |
| 202 |